Increased transforming growth factor beta expression inhibits cell proliferation in vitro, yet increases tumorigenicity and tumor growth of Meth A sarcoma cells.

نویسندگان

  • H L Chang
  • N Gillett
  • I Figari
  • A R Lopez
  • M A Palladino
  • R Derynck
چکیده

Several observations correlate increased expression of transforming growth factor (TGF) beta 1 with tumorigenesis, suggesting that expression of this multifunctional growth factor may provide an advantage in tumor formation. However, many tumor cells are inhibited in their proliferation by TGF-beta in vitro, thus suggesting that TGF-beta synthesis could exert an antiproliferative effect on tumor formation. To evaluate the physiological relevance of increased TGF-beta 1 synthesis in such tumor cells which are strongly inhibited in their proliferation by TGF-beta, we chose Meth A sarcoma cells as a model system. We established cell clones overexpressing TGF-beta 1 and determined its effect on tumor formation in mice that are not immunocompromised. Increased expression of biologically active TGF-beta 1 resulted in a profound growth inhibition in the transfected clones and increased adhesiveness in vitro. However, these cells were much more tumorigenic than Meth A cells that did not overexpress TGF-beta 1, as assessed by both tumor incidence and tumor growth. In addition, parental Meth A cells were inhibited in their tumor formation by neutralizing TGF-beta antibodies and stimulated by exogenous TGF-beta. Our results thus provide evidence that increased TGF-beta synthesis provides a major advantage for tumorigenesis, even if the cells are growth inhibited by their endogenous TGF-beta synthesis in culture. These results suggest that, in vivo, direct effects of TGF-beta on the tumor environment, such as increased extracellular matrix formation and cell-matrix interactions, and local suppression of the immune surveillance may provide a growth advantage which overrules any direct antiproliferative effects of TGF-beta, as suggested by the effects in culture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Transforming Growth Factor-β (TGF-β) on proliferation of gastric epithelial cells in culture

Objective: Helicobacter pylori has a well-established role in the development of gastric cancer. In vitro studies reveal increased proliferation of the gastric mucosa in the presence of H. pylori infection. It has been also shown that production of some cytokines, such as interleukin-1 beta (IL-1b) is in...

متن کامل

Runx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells

Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carc...

متن کامل

Runx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells

Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carc...

متن کامل

Laminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice

Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...

متن کامل

In vitro Induction of Fetal Hemoglobin in Erythroid Cells Derived from CD133 Cells by Transforming Growth Factor-b and Stem Cell Factor

Increased fetal hemoglobin (HbF) in b-globin gene disorders ameliorates the clinical symptoms of the underlying disease. 5-azacytidine, butyrate and hydroxyurea, have been shown to activate g-globin gene expression. It has also been found that hematopoietic growth factors can influence expression of g-globin in erythroid cultures and in animal models. This study was designed to evaluate the in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 53 18  شماره 

صفحات  -

تاریخ انتشار 1993